← 回到花园

Meet Neo Your Robot Butler In Training
在训练中认识您的机器人管家NEO

2026-01-14 • TED Learning Garden
✨ Key Takeaways

📋 TED演讲大纲:在训练中认识您的机器人管家NEO

I. 引言:从能源富足到劳动力富足

  • 类比:200年前没人敢想象能源会像今天这样触手可及。
  • 愿景:我们正站在未来的大门口,未来的劳动力(制造产品、服务、家务)将像今天的能源一样随处可得 。
  • 目标:将人类从资源短缺的争斗中解放出来,重新定义人类的意义 。

II. 为什么我们需要机器人?

  • 现实需求:解决全球劳动力短缺和人口老龄化问题 。
  • 核心价值:不仅仅是解决眼下的任务(洗碗、洗衣),更是把“时间”还给人类 。
  • 现状:机器人不再是科幻,它们已经进入了演讲者公司(1X)员工的家中 。

III. 机器人训练的范式转移:从工厂到家庭

  • 传统误区:普遍认为机器人应该先在工厂做重复性工作,变聪明后再进入家庭 。

    • 失败经验:演讲者在2022年的尝试证明这是错的。机器人在工厂重复劳动20-50小时后就停止学习了,变得“思想狭隘” 。
    • 原因:工厂的设计初衷是减少差异,这与智能发展所需的多样性背道而驰 。
  • 正确路径家庭 = 机器人的互联网

    • 类比:就像大语言模型(LLM)需要整个互联网的多样化数据才能产生智能一样,机器人需要家庭环境的复杂性和混乱度来进化 。
    • 例子:一个简单的杯子在家里有无数种状态(脏/净、位置、社交背景),这种多样性是智能的关键 。
    • 验证:2023年的测试表明,在家庭环境中(倒茶、拿蛋糕),机器人的智能进步显著 。

IV. NEO的设计哲学:安全与仿生

  • 安全挑战:制造在人群中安全的机器人非常难 。
  • 传统缺陷:传统机器人僵硬、能量高、危险 。
  • NEO的创新
    • 拥有受人类肌肉启发的“肌腱”结构 。
    • 特点:安静、柔软、顺从、轻便、安全 。

V. 未来展望:超越家务

  • 短期:理所当然地接受身边的劳动力辅助 。
  • 长期:机器人不仅做家务,还能建造数据中心、芯片工厂、甚至粒子加速器和实验室 。
  • 终极目标:通过人机共生,加速科学实验,回答关于宇宙和人类角色的终极问题 。
    📝 Notes

    家人们!想象一下,如果有一天“劳动力”像家里的电一样,随开随用,那是种什么体验?💡

    不用洗碗、不用叠衣服、不用在大扫除里崩溃……

    最近看了一个超震撼的TED演讲,讲的是人形机器人NEO,感觉科幻电影真的照进现实了!🎬

    👇 这不仅仅是个扫地机,它甚至有了“肌肉”!

    🏠 为什么以前的机器人很笨?

    演讲者Bernt Børnich(也是机器人公司1X的老板)揭秘了一个大误区:

    以前大家觉得机器人应该先去工厂打螺丝,练熟了再回家。❌

    大错特错! 工厂里动作太重复,机器人练几十个小时就“脑子僵化”停止学习了。

    真相是: 机器人得直接进家里练!因为家里够“乱”、够复杂(比如一个杯子能出现在桌上、地上、水槽里),这种多样性才是机器人变聪明的关键!就像ChatGPT是看了整个互联网才变聪明的一样!🧠

    🦾 NEO 有什么不一样?

    这可不是那种硬邦邦、撞到人会痛的铁疙瘩。

    NEO的设计模仿了人类的肌腱和肌肉!💪

    柔软、安静、轻便,就算如果不小心碰到你,也是软软的,安全感拉满!再也不用担心被机器人误伤啦~

    🚀 未来的脑洞有多大?

    如果你以为它只会洗碗就格局小了!

    未来的NEO不仅能帮我们就带娃、做家务,还能去建实验室、造芯片、跑科学实验

    它不是来抢饭碗的,是来把我们从枯燥劳动里解放出来,让我们有时间去探索宇宙、享受生活的!🌌

    🖊 Highlights
    0:03.534
    (Applause)
    (掌声)
    0:19.449
    NEO: As a species, humans have mastered energy to the level where it is, for all practical purposes, completely abundant. 200 years ago, no one could have imagined a world where energy was so accessible that most people would take it for granted. If you had asked the smartest person on Earth whether we could one day summon light with the flip of a switch, they would have said it was impossible. Even if the brightest minds worked on it together for an eternity. But today, it's just that easy. Energy is everywhere. All around us, all of the time.
    NEO :作为一个物种, 人们掌握能源的水平 无论出于何种用途,都已相当高超。 200 年前, 没人能想象能源会如此触手可及, 以至于现代人都认为那是理所当然的。 如果你问当时地球上最聪明的人, 有没有可能有朝一日 我们拨动开关就能召唤光明? 他们一定会说不可能。 即使是最智慧的人们齐心协力 花上无限的时间也做不到。 但是今天,就是这么简单。 能源无处不在。 无时无刻,无处不在。
    summon /ˈsʌmən/
    v.召唤;召集(会议);传唤,传讯(出庭);迫切地要求(帮助);鼓起(勇气),振作(精神)
    eternity /ɪˈtɜːrnəti/
    n. 无穷无尽的时间;永恒,永久;永生;未来,来世;死
    0:51.048
    Now what if I told you that the same is about to happen with labor? We are standing at the gates of a future where the work needed to build the products we use, the services we rely on and even the chores in our homes will be as effortlessly accessible as energy is today, enabling you to explore new frontiers and focus on what makes you truly human.
    如果我说, 劳动力也会出现同样的情况呢? 我们正在进入一个全新的未来, 制造我们使用的产品、依赖的服务, 甚至连家务所需的劳动力 都像如今的能源一样触手可及, 让你们能够探索新的前沿领域, 专注于真正人性的部分。
    chore /tʃɔːr/
    n. 家庭杂务,杂活;累活,苦差事
    1:12.936
    Thank you.
    谢谢。
    1:19.476
    (Applause)
    (掌声)
    1:24.715
    Bernt Børnich: Thank you, NEO. You're the best. It's an amazing machine, right?
    伯恩特·博尼奇(Bernt Børnich): 谢谢你,NEO。 你是最棒的。 这机器太棒了,对吧?
    1:33.156
    Audience: Yeah.
    观众:是的。
    1:34.324
    (Applause)
    (掌声)
    1:37.928
    BB: So I spent the last decade of my life working on building humanoid robots like NEO. Robots that will hopefully soon be able to do almost anything that we could imagine. Now whether this is helping you with the dishes, helping you do your laundry or whether this is helping your aging grandma, there's never really been a time better for robots. We have an aging population in need of help, and we have a large labor shortage across most of the global economy. And there's much, much more.
    BB:我在过去十年里, 一直在研究打造 像 NEO 这样的人形机器人。 希望这些机器人很快就能 完成几乎所有我们能想到的事情。 无论是帮你洗碗, 帮你洗衣服, 还是帮助你年迈的奶奶, 现在是机器人发展的最好时机。 我们有需要帮助的老年人群体, 全球大部分经济体 都存在严重的劳动力短缺, 另外还有其他很多需求。
    humanoid /ˈhjuːmənɔɪd/
    adj. 像人的 n. 类人动物
    2:14.498
    But even more importantly, to me, these robots, they promise something greater than just the ability to solve the problems of today. They can solve things that we cannot do today. They can give us back things like time. And as these systems and AIs now become both physical and agentic, we can start to work towards a future where we actually have an abundance of labor. We can start towards lifting humanity out of this constant battle over scarcity of resources, and create a world where everyone has what they need. And I think that will, to some extent, actually redefine what it means to be human.
    但更重要的是, 对我来说,这些机器人 带来的不仅仅是解决眼下问题的能力, 它们可以解决我们眼下做不到的事情。 它们可以把一些宝贵资源 还给我们,比如时间。 随着这些系统和 AI 现在既有实体,又有智能体, 我们可以开始朝着一个 真正拥有充足劳动力的未来而努力。 我们可以着手让人类摆脱 一直以来的资源短缺之争, 创造一个人人各取所需的世界。 我认为,在某种程度上, 这将重新定义“人类”。
    scarcity /ˈskersəti/
    n. 不足,缺乏
    3:02.145
    But since I'd say, around year 1400, when Leonardo da Vinci made "The Mechanical Man," that to me is kind of like the first example of a humanoid robot, these things have been mainly a thing of science fiction, not reality. But this is changing. The robots, they're actually here. And when I say here, I don't necessarily mean in videos. They're actually here in our homes. At least if you work at 1X, where I work, where we now have them in quite a few homes throughout the company. And already later this year, I hope some of you guys will have it in your home and join us on this journey.
    但是自从 1400 年左右, 莱昂纳多·达·芬奇 创作了“机器武士”, 我觉得有点像人形机器人的鼻祖, 这些东西一直存在于科幻而不是现实中。 但情况正在改变。 机器人已经来了。 我说“来了”,不一定是指视频里。 它们其实已来到了我们的家里。 如果你在 1X 工作, 也就是我工作的地方, 我们公司的好几位员工家里都有了。 今年晚些时候, 我希望在座的各位家里也能有它, 加入我们的旅程。
    3:43.453
    So that means NEO is now part of my daily routine. So it does some of the chores around the house. Some of this is autonomous. Some of this is done through remote operation as it's learning. And I talk to it. I treat it kind of like a butler, like a companion. It's part of the family. And I think it's actually incredibly interesting to also see how this social dynamic develops, because this is, of course, incredibly useful and fun to have it do stuff I don't want to do around my home. But it's also really fun to see the beginning of like, what will this relationship be between man and machine as these AIs become physical.
    这意味着 NEO 现在 已成为我日常的一部分。 它会做家里的一些家务。 有些是自主的。 因为它还在学习, 有些是通过远程操作完成的。 我会和它说话, 把它当作管家、陪伴一样对待。 它是我们家庭的一部分。 我觉得看看这种 社交关系发展其实非常有趣, 因为让它做我不想做的家务 当然非常有用又有趣。 但是,看到这样的开端也非常有趣, 当 AI 变成实体时, 人与机器之间的关系会是怎样的。
    butler /ˈbʌtlər/
    n. 男管家;仆役长 n. (Butler)(英、西)巴特勒;(俄、德、瑞典)布特勒(人名)
    4:23.160
    Now like I said, the hardware is actually here. It took us about a decade of very hard work, but also many people that came before us, a lot of time to do the foundational research for us to now finally be able to build a machine that can do almost anything that a human can do. But it begs the big question, of course: When will they be fully autonomous? When will they actually become truly intelligent? And what is the path that will actually take us there? And I think this will be very obvious in [retrospect]. They need to live and learn among us. We actually need to take these machines, and we need to adopt them. We need to put them into our society and let them learn just as we do.
    如我所说,硬件已经就位了。 我们花了大约十年的艰苦工作, 但也有许多在我们之前的人, 花了大量时间做基础研究, 让我们终于能够制造出一台 几乎可以做任何人类能做的事情的机器。 但这当然引出了一个大问题: 它们何时才能达到完全自主? 它们何时才能达到真正的智能? 我们到底要走哪条路才能实现? 我觉得回想一下就很明显了。 它们得和我们一起生活和学习。 我们得带着这些机器, 使用这些机器。 我们得把它们放进社会, 让它们像我们一样学习。
    5:15.712
    So the general convention has been, or general wisdom, that robots, they're going to first happen in factories. So we're going to put these robots into factories, they're going to do the dull, repetitive, dangerous tasks that they're good at. And as they do these repetitive tasks, they get better and better, right? They get more intelligent. And after some time, we can put them into our home. They will be able to do our laundry, they will build our skyscrapers.
    普遍观念和看法是机器人 将首先出现在工厂中。 我们要把这些机器人放进工厂, 它们会做它们擅长的枯燥、 重复、危险的工作。 它们做这些重复性工作的同时, 也会做得越来越好,对吗? 它们越来越智能了。 过一段时间, 我们就可以把它们放进家里。 它们能给我们洗衣服, 拼我们的摩天大楼。
    dull /dʌl/
    adj. 枯燥无聊的;无精打采的;不明亮的;(声音)不清晰的;阴沉的;不明显的,隐隐的;钝的;迟钝的,愚笨的;萧条的 v. 减轻,缓解;使迟钝;(使)变模糊,变暗淡;(使刀或刀片等)变钝;(兴趣、痛苦等)减少
    skyscraper /ˈskaɪskreɪpər/
    n. 摩天大楼
    5:43.273
    But this is actually categorically wrong. And we know because we actually tried that. So back in 2022, we took our previous generation wheeled humanoid, Eve, and we put it in industry. And it actually went really well. We solved a lot of kind of narrow, specific tasks, and it got really good at them really fast. And then after about 20 to 50 hours, the robots, they just stopped learning. And if you think about it, it's not really rocket science. Because if you’re doing the same task over and over every day, and it's the only thing you're doing, you're not going to get very intelligent. There's no information there. And also you're going to generally become very narrow-minded, right? We don't like being narrow-minded. And if you think about like, what is a factory? It is essentially a process that we design to reduce diversity and variance. You want your factory worker to need as little information as possible to be able to do the job and get a high-quality, repeatable product out. And this is kind of the opposite of what you need for intelligence. You need diversity, you need to challenge yourself. You need to do new tasks every day that you don't know how to do.
    但这其实是完全错误的。 我们知道是因为我们确实尝试过了。 早在 2022 年, 我们把上一代轮式人形机器人 Eve 投入了工业使用。 非常顺利。 我们解决了很多细分而具体的任务, 它很快就掌握了这些任务。 大约 20 到 50 个小时后, 机器人就停止学习了。 想一想, 这并不是什么高科技难题。 因为如果你每天一遍 又一遍地做同样的任务, 而且你只需要做这件事, 你也不会变得十分智能。 没有信息。 一般你就会变得思想闭塞了,对吗? 我们不喜欢思想闭塞。 仔细想想,工厂是什么? 其实是我们为了减少 多样性和差异而设计的流程。 你希望你的工厂工人 为了完成任务只需尽可能少的信息, 并生产出高质量、可复制的产品。 这与智能的需求恰恰相反。 你需要多样性,需要挑战自我。 你每天都得做一些 你不知道怎么做的新任务。
    narrow-minded /ˌnæroʊ ˈmaɪndɪd/
    adj. 狭隘的;心胸狭窄的;有偏见的
    7:03.553
    And there's a great parallel here to the early days of large language models. So when we use these models today, and they're getting really good, we kind of forget where they started. They started with a lot of people trying to make very narrow models. So if I take an example, if you wanted to make a very good writing assistant to write poetry, then you would, of course train on all of the best poetry in the world. Make sense. And then it wouldn't really work. And when we started training these models on all of the internet, right, the complete diversity of all human knowledge, they started working. They became kind of smart. They started being able to, to a certain extent, to reason. And I'd say like, understand to a certain extent, what is the question you’re asking and how should I answer. And this is also how we humans learn. We need a large amount of diversity for us to be able to develop into intelligent beings. So why should it be different for robots? And it really begs the question then: What is the equivalent of the internet? How do we find this kind of like internet-level diversity of information for our robots? Well we come to the conclusion that this is probably the home.
    这与早期的大语言模型如出一辙。 我们现在使用这些模型时, 它们已经做得非常好了, 我们就会忘记它们的起点。 当初很多人想做很垂直的模型。 举个例子, 如果你想做一个 很好的写作助手来写诗, 那你当然就会用世界上所有好诗来训练。 有道理。 但这可是行不通的。 我们用整个互联网的信息训练这些模型, 用上所有人类知识的多样性, 这样才对。 它们变得有些聪明了。 在某种程度上, 它们开始学会推理了。 理解到一定程度, 你会问什么问题,我会如何回答。 这也是我们人类学习的方式。 我们需要大量的多样性 才能成长成智能生物。 那为什么对机器人来说不是这样呢? 这也就引出了一个问题: 有什么东西与互联网相当? 我们如何为我们的机器人 找到相当于互联网级别的多样性呢? 我们得出的结论是, 可能是家庭生活。
    8:28.004
    Now the home is this beautiful, chaotic thing. It's kind of like the messiness that is being human. And I want to take a small example here. So think about a cup. Now of course, there's many cups in the world, and you want to be able to figure out how all of them work. But even if you look at one specific cup, it can be so many things. Is it dirty? Is it clean? It's kind of in the middle? Is it on the table, in the cabinet, on the floor? It can even have a social context. Someone's using the cup. Someone's waiting for the cup. Like, why is the cup even there? And this is just a cup. Now think about expanding this out into everything and every object and everything going on in your home. That's the kind of diversity that we're talking about to get to proper machine intelligence.
    家庭生活美丽又混乱。 它就是作为人类的乱七八糟。 举一个小例子。 想象一个杯子。 世界上有许多杯子, 你想知道这些杯子是什么情况。 但即使你看着某一个杯子, 它也会牵扯很多问题。 它是脏的吗?是干净的吗? 还是半脏不脏? 它在桌子上吗? 在柜子里,在地上吗? 它甚至可以有社交信息。 有人在用杯子。 有人在等着用杯子。 为什么这儿有个杯子? 这还只是一个杯子。 想想把它拓展到其他事、 家里的每件东西、每件事。 这就是我们要实现真正的 机器智能所需的多样性。
    chaotic /keɪˈɒtɪk/
    adj. 混乱的,无秩序的;(与)……混沌(有关)的
    cabinet /ˈkæ.bɪ.nɪt/
    橱柜
    9:18.688
    So like any good scientist, right, we had this hypothesis, and now we have to test it. So in 2023, we brought our robots home. And I had Eve in my house for quite a while. And it was, of course, doing the standard things like emptying the dishwasher, but also bringing me a cup of tea when I was enjoying playing board games with my friends or serving cupcakes at my daughter's birthday party. And pretty quickly, it actually became quite clear that this hypothesis actually was the ground truth. The home is this incredible, diverse source of data that lets us continue to progress intelligence. So we thought originally that it was going to be this, but actually it was this.
    如同每一位优秀的科学家, 我们有这样的假设, 现在我们得验证它。 2023 年,我们将机器人带入家庭。 我把 Eve 带回家已经有一会儿了。 当然,它会做一些常规的事情, 比如清空洗碗机, 也会在我和朋友们打桌游时 给我拿来一杯茶, 或者在我女儿的生日派对上 派发纸杯蛋糕。 很快, 很显然这个假设就是正确的。 家庭生活就是这么好、 这么多样化的数据来源, 让我们继续推进智能的发展。 当初我们想象的是这么发展, 但事实是这样。
    10:12.008
    And let me show you guys now how this actually works in practice. Oh thank you NEO, you’re doing a good job. It's a bit noisy, but hopefully you can still hear me. What you see here now, of course, is just a subset of tasks that NEO can do. And this is a mix of autonomy, for things the robot is good at, and some remote operation where someone's guiding the robot to basically do expert demonstrations on how to do these tasks. And as we have an increasing number of these robots throughout homes, living among us and learning, more and more of this becomes autonomous until hopefully, one day, all of this will be fully autonomous.
    我想向大家展示实际使用中是怎么样的。 谢谢 NEO,你做得很棒。 有点吵, 但希望你还能听见我的声音。 大家现在看到的 当然只是 NEO 可以完成的一部分任务。 这混合了机器人在擅长的事上的自主性 和一些远程操作, 有人会通过演示完成这些任务的 专家示范来引导机器人。 随着我们家中各处的 此类机器人越来越多, 与我们一起生活、学习, 越来越多操作会变得自主, 直到希望有朝一日, 所有操作都能完全自主。
    11:07.397
    And if you kind of follow along in the field, a natural question to ask at this point would be: Why doesn’t everyone do this? If it's so obvious. Well it actually turns out, it’s incredibly hard to make a robot that is safe among people. So robots are traditionally these quite stiff, high-energy -- you’re doing great, NEO, you’re doing great. They're this -- careful, I don’t want to get watered -- stiff machines that are high-energy and dangerous. And this is very different from how NEO works. NEO actually has tendons that [get] pulled, very loosely inspired by human muscle. And this makes NEO into a robot that is quiet, soft, compliant, lightweight, safe, and really able to live among us and learn among us. Let's see if he figures it out. It's a hard one. You can do it, NEO.
    如果你在关注这个领域, 那么这时候你自然会想问一个问题: 为什么不人人都这么做呢? 如果已经如此显而易见。 事实证明,非常难以 做出人群中保证安全的机器人。 机器人通常这些很僵硬、很高能量的…… 你很棒,NEO,你很棒。 它们是…… 小心点,别撒我身上…… 又高能量又危险的僵硬机器。 这与 NEO 的运行方式截然不同。 NEO 的肌腱会受到松散的拉力, 仿照人类肌肉。 这就让 NEO 成为了安静、柔软、 顺从、轻便、安全的机器人, 真正能与我们一起生活、学习。 我们来看它能不能做到。 很难哦。 你可以的,NEO。
    tendon /ˈtendən/
    n. [解剖]腱 n. (Tendon)人名;(法)唐东
    12:17.066
    (Applause)
    (掌声)
    12:22.005
    I said he's the best, right? OK.
    我说了他是最棒的,对吧? 好的。
    12:33.850
    So this is still, of course, incredibly early. We're all the way in the beginning of this journey. But I do hope that, in not so long, just like we take energy for granted around us, we will be able to take labor around us for granted. And we might soon not even remember the day where there wasn't always like, a helping hand available for anything we wanted to do. But as these machines go around in our society and learn, to me this journey is about a lot more than just you not having to do your laundry. It's about creating a future where we actually have time to focus on what matters to us as humans, and getting rid of these constraints. But also, it's an opportunity to really have these machines help us solve some of the outstanding questions that we still have. Like, can we have robots build robots? Can we have robots build data centers to progress AI? Can we have robots that build chip fabs to help us accelerate adoption of AI? And I think it's getting pretty clear that we can have all of these things. But it goes even further than that. I hope we can get a future where we have humanoid robots like Neo that is actually building particle accelerators, that is building labs. We will have millions of robots around in the world doing high-quality, repetitive experiments in labs and helping us progress science at a pace that we have never seen before.
    当然,现在还为时尚早。 我们还在这段旅程的起点。 但我确实希望,在不久之后, 就像我们理所当然地看待能源, 我们也能理所当然地接受身边的劳动力。 我们可能很快就会不记得是从哪一天开始, 我们想做的所有事都有了助手。 但是,随着这些机器 在我们的社会中不断学习, 对我来说,这段旅程 不仅仅是你不用洗衣服了。 这是创造一个未来, 在这个未来中,我们都有时间 关注对人类来说重要的事情 并摆脱限制。 但是,这也是一个真正让这些机器 帮助我们解决一些 仍然悬而未决问题的机会。 我们可以让机器人制作机器人吗? 我们可以让机器人 建造数据中心来推进 AI 吗? 我们可以让机器人建造芯片晶圆厂 帮助我们加速 AI 使用吗? 我觉得很显然是可以的。 但还远不止于此。 我希望我们未来能 让像 NEO 这样的人形机器人, 制作粒子加速器,建造实验室。 全球将有数百万机器人在实验室中 进行高质量的重复实验, 帮助我们以前所未有的速度 推进科学发展。
    14:16.519
    And I hope that in the future, through this kind of like a symbiosis between man and machine, we can start trying to answer some of the remaining big unanswered questions about the universe and our role here. And I think if we can do that, that will to some extent redefine what it means to be human.
    我希望将来, 通过人与机器之间的这种共生关系, 我们可以开始尝试回答 一些有关宇宙和我们的角色 尚未解决的重大问题。 我认为,如果我们能做到, 那将在某种程度上 重新定义“人类”的意义。
    symbiosis /sɪmbaɪˈoʊsɪs/
    n. [生态] 共生;合作关系;共栖
    14:37.106
    Thank you.
    谢谢。
    14:38.274
    (Applause)
    (掌声)